Plan-Based Bus Bridging Strategy During Disruptions of Urban Rail Networks

Jiayun Wang

School of Naval Architecture, Ocean and Civil Engineering Shanghai Jiaotong University

Jun 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction

Network Disruption Response Planning Problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Exact slution——CPLEX

Heuristic algorithm

Introduction

Network Disruption Response Planning Problem

Exact slution——CPLEX

Heuristic algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Introduction

In major metropolitan areas like Beijing and Shanghai, bus bridging strategies have been integrated into urban rail networks to mitigate congestion and prevent traffic gridlock situations.

However, the structuring of bus routes remains at a rudimentary level, relying on experience and intuition rather than effective theoretical frameworks and tools to aid decision-making.

This thesis addresses this issue by developing decision support models and algorithms, offering decision support solutions for public transport management and operations departments. These tools are designed to enhance emergency management in public transportation systems.

Introduction

Network Disruption Response Planning Problem

Exact slution——CPLEX

Heuristic algorithm

Problem Description

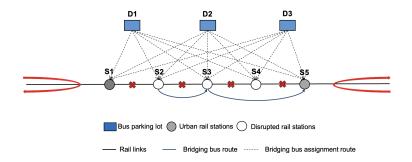


Figure: Illustrative Example of Transit Rail Network Disruption and Responsive Bus Bridging Routes

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Assumptions

- 1. Interrupted stations do not include interchange stations
- 2. Passengers in the station only leave through emergency buses during the disruption

3. No passengers leave or enter the station during the interruption

Notations

Set and parameters

- $\mathcal{B}:$ Set of bus
- $\mathcal{S}:$ Set of disrupted urban railway station
- $\mathcal{D}:$ Set of bus parking lot
- \mathcal{K} : Set of O-D pairs that require evacuation $k \in \mathcal{K}$
- t_{ij} : Travel time between station i and station j
- Q_{ij} : Demand between station i and station j
- D_d : Number of bus at bus parking lot d
- C: Maximal capacity of bus

Decision variables

 $x_{ij}^{br} \colon \in \{0,1\},$ 1 if the r_{th} transportation task of bus b is from station i to station j

 $y^{b}_{\textit{dj}}: \in \{0,1\}, \ 1$ if bus b is initially assigned from parking lot d to station j

 u_b : Number of tasks that bus b assigned to

Mathematical problem

Minimize Z subject to

$$Z >= T^b \quad \forall b \in \mathcal{B} \tag{1}$$

$$t^{b}_{assign} = \sum_{d \in D} \sum_{j \in S} y^{b}_{dj} t_{dj} \quad \forall b \in \mathcal{B}$$
⁽²⁾

$$t_{bridge}^{br} = \sum_{(i,j)\in\mathcal{K}} t_{ij} x_{ij}^{br} \quad \forall b \in \mathcal{B}$$
(3)

$$T^{b} = t^{b}_{assign} + \sum_{n=1}^{u_{b}} t^{bn}_{bridge} \quad \forall b \in \mathcal{B}$$
(4)

$$\sum_{d\in\mathcal{S}} x_{dj}^{br} = \sum_{k\in\mathcal{S}} x_{jk}^{b(r+1)} \quad \forall b\in\mathcal{B}; r = 1, 2, ..., u_b - 1$$
 (5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\sum_{(i,j)\in\mathcal{K}} x_{ij}^{br} = \sum_{(i,j)\in\mathcal{K}} x_{ij}^{b(r+1)} \quad \forall b \in \mathcal{B}; r = 1, 2, ..., u_b - 1 \quad (6)$$

$$\sum_{(i,j)\in\mathcal{K}} x_{ij}^{br} <= 1 \quad \forall b \in \mathcal{B}; r = 1, 2, ..., u_b \quad (7)$$

$$q_{ij}^{br} <= C x_{ij}^{br} \quad \forall (i,j) \in \mathcal{K}; \forall b \in \mathcal{B}; r = 1, 2, ..., u_b - 1 \quad (8)$$

$$\sum_{b\in\mathcal{B}} \sum_{r=1}^{u_b} q_{ij}^{br} >= q_{ij} \quad \forall (i,j) \in \mathcal{K} \quad (9)$$

$$\sum_{d\in\mathcal{D}} \sum_{j\in\mathcal{S}} y_{dj}^b <= D_d \quad \forall d \in \mathcal{D} \quad (10)$$

$$u_b >= 0 \quad \forall b \in \mathcal{B} \quad (11)$$

$$u_b <= \alpha \quad \forall b \in \mathcal{B} \quad (12)$$

$$Q_{ij}^s >= 0 \quad \forall (i,j) \in \mathcal{K} \quad (13)$$

$$x_{ij}^{br} \in \{0,1\}, y_{dj}^b \in \{0,1\} \quad (14)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction

Network Disruption Response Planning Problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Exact slution——CPLEX

Heuristic algorithm

Scenario[Small-scale]

- $\mathcal{D} = \{D_1, D_2, D_3\}$
- $S = \{S_1, S_2, S_3\}$
- 10 buses: 3 in D_1 , 4 in D_2 , 3 in D_3

Results:

- Excavation time: 65 minutes
- Program running time: 42.72s

驻车点	应急公交序号	疏运计划	
	B1	D1-S3-S1-S3	
D1	B2	D1-S3-S1-S3	
	B3	D1-S2-S3-S2-S3	
D2	B4	D2-S3-S1-S3	
			续表 3-
	B5	D2-S3-S2-S1-S2-S3	
	B6	D2-S1-S2-S1-S2-S3	
	B7	D3-S1-S3-S1	
D4	B8	D3-S1-S3-S1	
	B9	D3-S1-S3-S1	
	B10	D3-S3-S2-S1-S2-S1	

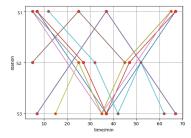


Figure: Bus scheduling plan

Scenario[Large-scale]

- $\mathcal{D} = \{D_1, D_2, D_3, D_4\}$
- $S = \{S_1, S_2, S_3, S_4\}$
- 30 buses

Results:

- Excavation time: -
- Program running time: More than 24 hour
- Need algorithms that converge quickly to high quality solutions

Elapsed	time =	78255.17 sec.	(8342646	.40 ticks,	tree = 230.52	MB, solutio	ons = 13)
704294	81952	75.0000	153	85.0000	75.0000	2.54e+08	11.76%
705466	82097	infeasible		85.0000	75.0000	2.55e+08	11.76%
706939	82345	75.0000	178	85.0000	75.0000	2.55e+08	11.76%
708305	82452	75.0000	175	85.0000	75.0000	2.56e+08	11.76%
709895	82840	75.0000	201	85.0000	75.0000	2.56e+08	11.76%
711132	83185	75.0000	159	85.0000	75.0000	2.57e+08	11.76%
712451	83651	infeasible		85.0000	75.0000	2.58e+08	11.76%
714129	84250	77.0000	127	85.0000	75.0000	2.58e+08	11.76%
715457	84738	75.0000	202	85.0000	75.0000	2.59e+08	11.76%
717045	84906	infeasible		85.0000	75.0000	2.60e+08	11.76%
Elapsed	<pre>time =</pre>	78753.94 sec.	(8495320	.90 ticks,	tree = 293.19	MB, solutio	ons = 13)

Figure: CPLEX console

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction

Network Disruption Response Planning Problem

Exact slution——CPLEX

Heuristic algorithm

Average Algorithm

From the point of view of maximising the use of resources, the time each bus spent should be as equal as possible. After the random initial assignment, in each round:

- 1. identify the bus with the longest operating time
- 2. allocate one task to other buses

until all tasks have been assigned.

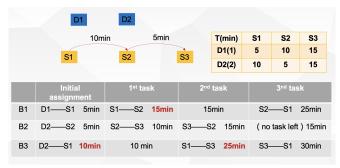


Figure: Illustration of Average Algorithm

Improvement to Average Algorithm

After generating the initial solution using the average algorithm, continuously decrease the operating time of the longest-running bus through neighborhood actions.

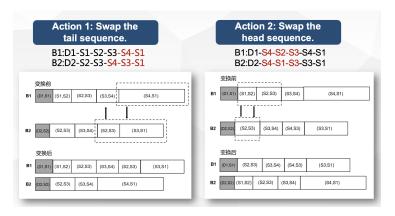


Figure: Illustration of neighborhood actions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Comparisons

Note.

AA represents Average Algorithm and IAA represents Improved Average Algorithm.

	Optimal Time (min)	Running Time (s)	Optimality Gap
CPLEX	87	3600	0
AA	108	33	24.1%
ΙΑΑ	85	34	2.2%

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ